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Exact Kinetics for "Almost Random" 
Irreversible Filling of Lattices 
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A variety of processes can be modeled by the irreversible cooperative filling of 
lattice sites. We consider here cases where the filling rate is independent of the 
state of the surrounding sites except when all nearest neighbors are already filled 
(where a generally different rate operates) and indicate some applications for 
such choices. Exact solutionsare obtained to the hierarchical form of the master 
equations for subconfiguration probabilities for a lattice of arbitrary dimension 
or coordination number. Analogous irreversible coadsorption processes and 
processes with 10nger-range cooperative effects, also amenable to exact solution, 
are discussed. 

KEY WORDS: Irreversible filling; almost random; lattice; hierarchial rate 
equations. 

1, INTRODUCTION 

The dynamics of magnetic spin systems and the kinetics of various site- 
localized adsorption, diffusion, nucleation, and other reactive molecular 
processes are often treated using lattice models. We restrict our attention 
here to processes where the events occur at single sites. If a process is 
reversible, e.g., cooperative adsorption/desorption or diffusion, the rates 
governing the dynamics are typically chosen compatible with detailed 
balance wherein the stationary state is chosen as the equilibrium state 
associated with some Hamiltonian. (1) For the case with nearest-neighbor 
(n.n.) interactions (cooperative effects), e.g., the dynamic Ising model, exact 
solution is possible only in one dimension and for some special choices of 
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interactions. (2~ In contrast, for irreversible processes on an infinite one- 
dimensional (or Bethe) lattice, one can readily obtain closed-form solutions 
for all choices of n.n. cooperative effects and, in fact, for certain longer- 
range cooperative effects which include an appropriate blocking range. (3) 
However, as a rule for higher-dimensional lattices, exact solution is not 
possible (random filling is an obvious trivial exception). (4) 

Here we describe a class of n0nrandom irreversible processes on 
infinite, uniform lattices of arbitrary dimension or coordination number for 
which exact closed-form solution is possible. The terminology of the ad- 
sorption problem is used for convenience and translationally invariant 
initial conditions will always be assumed. These exactly solvable processes 
are "almost random" in the sense that the adsorption rate for any site is 
independent of the number of (previously) filled n.n. and has value ~, except 
when all n.n. are filled where it has a value of c~'r. If c~--0, then at 
saturation (infinite time), the lattice will not be completely filled, some 
isolated empty sites remaining. We have noted previously (g) that if f "  
denotes the probability of some connected cluster of n empty sites, then 
clearly 

d /d t  f n = - n f f  n, n > 2 (1.1) 

(just as for random filling with rate ~-). In fact (1.1) holds for disconnected 
configurations of n empty sites provided each connected subcluster has > 2 
sites. Furthermore, the rate equation for the probability of a single empty 
site f l  involves only itself and various fn, n ) 2, and thus can be immedi- 
ately integrated to obtain f l  as a function of t (as will be shown later). In 
particular, for an initially empty lattice, when oL = 0 we obtain a saturation 
coverage of z / z  + 1 where z is the coordination number of the lattice. 

At this point, we indicate a more direct method of calculating satura- 
tion values of subconfiguration probabilities for the c~ = 0 almost filling 
problem. If one takes the (completely) random filling problem and tags 
sites which fill after all their n.n., then clearly one has complete information 
on the c~ = 0 problem at saturation. Furthermore whether a site has a 
tagged particle depends only in the filling history of that site and its n.n. 
Thus for the above-saturation coverage, we need only consider random 
filling of a site and its z n.n. and note that the probability of the center site 
not filling last is z / z  + 1. Other (combinatorially more complex) examples 
are given below. 

In Section 2, we first describe the detailed time dependence of f l( t)  for 
a two-dimensional square lattice, but then continue to show how one can 
obtain the time dependence of the probability of any subconfiguration (e.g., 
probabilities for configurations of n separated empty sites). The case c~ = 0 
is of particular interest. The saturation values of various subconfiguration 
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probabilities, of course, follow from integration of the rate equations, but 
we also obtain these more directly from combinatorial considerations. 
These results are extended in Section 3 to lattices with general coordination 
number z. In Section 4, we further extend our analysis to consider exact 
solution of competing irreversible filling of different atomic species where 
the rates for each are independent of the number and type of filled n.n. 
except when all n.n. are filled. Analogous irreversible filling processes with 
longer-range cooperative effects, also amenable to exact solution, are con- 
sidered in Section 5. A brief discussion of some other applications and 
extensions of the results is given in Section 6. 

Our treatment of the kinetics throughout will use the hierarchical form 
of the master equations (as alluded to above). These can be written down 
intuitively. (4~ The probability of a subconfiguration ~r at time t will be 
denoted f , ( t ) .  Here ~ consists of a subset of the sites specified empty, 0, or 
filled, a. The quantity fo(t ) =--fl(t) =-- 1 - f a ( t )  is of particular interest. 

Before proceeding with these analyses, we remark on some applica- 
tions to physical systems. According to Rempp's rate data, (5) the one- 
dimensional case, with a very small, models reaction of CH3SO2CH2Li 
attacking the carbonyl groups along the linear polymethylmethacrylate 
(polymer) chain. For a two-dimensional application, one could consider a 
lattice model for the conductance of potassium ions through a mem- 
brane. (6) The sites of the lattice are in either an active-proconductance 
("0-empty") or inactive-anticonductance ("a-filled") state. If all sites 
around a lattice cell are active, then a conducting pore is formed. Sites can 
change state reversibly provided they have at least one n.n. active (empty) 
site, with rates/3 (for 0 ~ a) and 7 (for a ~ 0) where/3 and 7 are functions 
of V, the transmembrane potential. (6~ The equilibrium state is always given 
by a random distribution of active (or inactive) sites and at the rest poten- 
tial V =  - 5 8  mV, / 3 / 7 ~ 2 . 1 5  so f 0 ~ 0 . 3 1 7  (fa~---0.683). (6'4) If we sud- 
denly lower the potential to - 1 0 0  mV (hyperpolarize), t h e n / 3 / 7  becomes 
~ 4 . 3 6  • 103, i.e., the resulting dynamics is essentially irreversible and 
corresponds to almost random filling with a---0.  As indicated in Ref. 6, 
after hyperpolarization a certain fraction of active (empty) sites remains 
frozen in the nonequilibrium stationary state. This fraction which depends 
on the initial conditions (i.e, on f0 for a random initial distribution) will be 
calculated below. For this system, our model is limited by the neglect of 
active-inactive site mobility. The presence of even low mobility (i.e., with 
hopping rate <</3 at - 100 mV) would have the effect of slowly reducing 
the above-mentioned fraction of "nearly frozen" active sites to ~ 1 0  -3. 

Another application of the a = 0 almost random filling is provided by 
the following surface adsorption process. Suppose that molecules, denoted 
AB, bond through A at specific two-dimensional substrate lattice sites 
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(possible reversibly) and that, provided an adjacent site is empty, B then 
dissociatively attaches to this site at a rate much faster than the initial 
adsorption. Further, suppose that  resulting A's are irreversibly attached and 
B's are quickly desorbed compared to the initial adsorption rate. Then it is 
clear that the statistics of the frozen A distribution as a function of A 
coverage is described by the a = 0 almost random filling problem (neglect- 
ing any cooperativity). The above is essentially the mechanism recently 
proposed to operate, under certain conditions, for dissociative adsorption of 
CO into Ni( l l0)  to deposit (frozen) carbidic c a r b o n s  ) Rates for CO 
adsorption and O desorption [via reduction with CO to form CO2(g)] are 
proportional to the CO pressure unlike the dissociation rate which will thus 
dominate at low CO pressure (as required). There are also indications that 
the O desorption rate dominates the CO adsorption rate. Thus we can 
describe exactly the nontrivial statistics of the carbidic carbon adatom 
distribution ignored in "standard" treatments of the kinetics (v) which 
neglect correlations such as c00 = f00 -f02.  

2. ALMOST RANDOM FILLING 0 ~  a OF A TWO-DIMENSIONAL 
SQUARE LATTICE 

In this discussion, the initial conditions will always be assumed invari- 
ant under all space group operations on the lattice (e.g., translation, 
rotation . . . .  ). The hierarchial rate equations then guarantee that this 
invariance holds for all later times. Some further natural constraints on the 
initial conditions will be adopted as required. 

For a two-dimensional square lattice, the rate equation for f0 is given 
by 

-dld' io: "'(iO- ia;o) + o  iO.o. (2.1) 
gt a 

Using 

f a = fo - 4foo + 2fooo + 4 f  o -  4 f  o + f o 
aOa O0 000 000 

a 0 

and defining s --= ~-t, one obtains 

<<>e~ { - 4Ioo +  iooo +4I~176 
0 

Since from (1.1), one has 

foo(S) = foo(Ole-  2s, fooo(S) = fooo(Ole - 3 , , . . .  (2.3) 

equation (2.2) can be trivially integrated to obtain f0 as a function of s (or 
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t). If we make a specific choice of initial conditions corresponding to a 
random distribution with f0 = x (so f ,  = 1 - x = y, say), then 

{ [ 4x2 (e(,~-2)S_l) 6x 3 (e(<,-3)S_l) 
f 0 ( s ) = e - ~ '  x + ( 1 - - a ) 2 " a  3 - - a  

4 x  4 x 5 ]} + ~ ( e  ('~-4)s- 1) 5-- a (e(~ 5),_ 1) 

(2.4) 

If we now consider the special case where a = 0, so the lattice does not 
completely fill, then 

fo(t = oo) = (1 - y5) /5  (2.5) 

As an application of (2.5), consider the membrane conduction prob- 
lem, described in the introduction, where the transmembrane potential is 
switched from its rest value (where y ~ 0.683) to a much lower value. For a 
two-dimensional square lattice model, ignoring rates for site mobility and 
activation, the final fraction of "frozen" active sites is ~ 0.170. 

As mentioned previously, probabilities for subconfigurations of n 
empty sites, where each connected subcluster has > 2 sites, can all be 
determined simply from (1.1). This, of course, does not provide a complete 
solution to the problem. To understand how to obtain other probabilities, it 
is elucidating to first compare f 0 and fofoo. We have that 

0 -0  

- d / d s f  o = 3 f  o - ( 1 - a ) f a o  (2.6a) 
0 - 0  0 - 0  aOaO 

a 

and 

- d / d s ( f o f o o  ) = 3f0f0 o - (1 - a ) f  a f00 (2.6b) 
aOa 

a 

Now conversion to probabilities involving only empty sites and use of (1.1) 
shows that 

i o o - i  o - ( i  -io)ioo 
aOaO 0 - 0  a ; a  

o a 

provided that init ial lyf 0 = fofoo, f o = f62, etc. Such initial factorizations, 
0-0 000 

which are trivially satisfied if the lattice is initially empty or randomly 
partially filled, are assumed hereafter. Thus, from (2.6) and (2.7), it is then 
immediate that 

f o ~fofoo for s > 0 (2.8) 
0 -0  
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This calculation can be repeated for a subconfiguration consisting of a 
single empty site separated (by any distance and direction) from any cluster 
of > 2 empty sites. Its probability is found to factorize as the product of f0 
and the probability of the > 2 site empty cluster. 

Next we turn to the determination of probabilities of pairs of separated 
(empty) sites. A calculation analogous to that above shows that if the 
separation is greater than a single site, then these probabilities all factorize 
as fo 2, i.e., the corresponding correlation is zero. It remains to determine fo 0 
and f 0  or the corresponding correlations e o o - - f o - o - f g ,  c o-----f 0 - f 0  2. 

O- O- 0 

N O W  

d / d s c o _ o  = d l d s ( f o .  ~ - f 3 ) =  _2c0_ ~ + 2(1 - a ) ( f  a - - f  a f o )  (2.9) 
aOaO aOa 

a a 

so using the results like (2.8), one obtains 

- d / d s  Co_ o = 2aCo_ o + 2(1 - a) / (fooo - foo fo )  - (foooo - 

P 

fooofo) 
L 

-2(fo -fo fo) + 2(fo -fo fo) 
000 O0 0000 000 

+ [JOoo ,o0 ol/ 0o  o Ol] 
0 0 0 0 

(2.10) 

which can be integrated using (1.1) and (2.2). For a random initial distribu- 
tion with f0 = x, one has 

d / d s ( e 2 ~ C o _ o )  = 2(1 - a ) ( f o  - x e  - ~ )  

x e Z a s ( x 2 e  -2s  -- 3x3e  -3s  + 3x4e  -4s  -- xSe  - S s )  (2.11) 

and using (2.4), one obtains Co_o(s ) explicitly. For the special case of an 
initial empty lattice (x = 1) and where a = 0, one obtains 

Co-o(S) = --2251 __ 1~ e 2s .{_ ~e:16 ~-3^a. - -  ~ e  -4s  .-I- 12~-e-5S 

-- ~ -e  -6s + ~ e  -7s  -- ~ e  -Ss  + ~5e -9s  -- l e - i ~  (2.12) 

An equation for c o for general a and initial conditions can be 
o -  

obtained analogous to (2.10). For the special case of an initially empty 
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lattice and where c~ = 0, one obtains after integration, 

C 0 ( S )  - -  110 2 6 , - 2 s  + 2e-3S _ Re49 - 4 s  "1- ~ e  s ,  

0 -  

_ 7e-6S + 252e-7, 7 -8s 2 -9s - z e  + s e  - - ~ e  lOs (2.13) 

The saturation values Co_o(t = ~ ) =  225~, c o(t = oc )=  lo0t can be ob- 
0 -  

tained more directly from the following combinatorial arguments. The 
number of ways to fill the 9(8) sites 

" 2  " 
"1 " 2  " " "1 

such that 1 and 2 fill after all their respective n.n., 16128 (2016), divided by 
the total number of ways, 9! (8!), of filling these 9 (8) sites gives 

f 0 _ 0 ( t = o o ) - 2  ( f 0 ( t = o o ) = ~ 0 )  (2.14) 
0 -  

i n  agreement with (2.12), (2.13) remembering that f0(t = oo)=  1. The 
structure of the underlying combinatorics will be elucidated in the next 
section. 

We now discuss the most general subconfigurations of empty sites 
which consist of a finite number of disconnected clusters. A factorization 
condition for these, which follows straightforwardly from calculations anal- 
ogous to those described above [cf. (2.6), (2.7)], can be stated as follows: 
from the probability of a disconnected empty subconfiguration we can 
factor out probabilities for any cluster with ~> 2 empty sites and can factor 
out probabilities for single empty sites which are separated from any other 
such empty sites by more than a single site. Thus the only empty subcon- 
figuration probabilities that remain to be determined (nontrivially) are 
strings of isolated empty sites separated by single unspecified sites, e.g., 

fo-o-o, f o,  fo-o-o-o, f o,  f o , f o . . . .  
- 0 - 0  

0 -0  0 - 0 - 0  0 - 0  0 

0 

Exact determination of these from the rate equations is a lengthy but 
straightforward procedure so details are not given. From these and previ- 
ously determined probabilities, we can calculate the probability of any 
subconfiguration by conservation of probability. (4) 

Finally we note that the saturation values of the above-mentioned 
strings of empty sites can be determined from straightforward but rather 
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messy combinatorial calculations [cf. (2.14)]. In fact such techniques can 
also be used to determine directly saturation values of subconfigurations of 
filled sites (again the calculations are messy except for small configura- 
tions). 

3. ALMOST RANDOM FILLING 0 - +  a OF AN INFINITE 
UNIFORM LATTICE WITH COORDINATION NUMBER z 

The procedures implemented here to obtain exact forms for subcon- 
figuration probabilities parallel those for the square lattice case and, for 
z = 4, results will reduce to those above. Thus we only sketch the deriva- 
tions and concentrate on results. Again we assume invariance of initial 
conditions under all space group operations on the lattice (which guaran- 
tees such invariance for probabilities for t > 0). Other constraints will be 
adopted as required. 

Suppose that initially the probabilities of all connected empty clusters 
with n > 2 sites, F ,  are equal. This condition is then guaranteed by (1.1) for 
all t > 0 and the rate equation for f0 becomes 

-dlds(e<'~fo)=(1-(~) e<̀" k ( -  l )"+'(~)f  "+' (3.1) 
n = l  

For an initial random distribution with f0 : x = 1 - y, integration of 
(3.1) and (1.1) yields 

z ( _ x : + ,  
fo-xe-'=(1-a)e-~S~ff=onYb-17~(Z)(e(~-~-'>-I ) (3.2) 

Thus when er = 0, 

( - x )  '~+1 _y~+~ 

.-o 7u 

The condition for factorization of probabilities stated for the square 
laitice case extends naturally. Thus it remains only to consider probabilities 
for subconfigurations of strings of isolated empty sites separated by single 
unspecified sites. Here we consider in detail only the probabilities pairs of 
separated empty sites having just one (f0.0) or two (f0:0) n.n. in common. 
Specifically we consider the corresponding correlations c o. o --- f0. o - f2 and 
co: 0 = f o : o -  fg and, for convenience, restrict our attention to an initially 
random distribution with fo = x. Then 

z - - I  

d/ds(e2~'Co.o) = 2 ( I -  c~)(fo - xe-S) ~=o(Z-n I ) (-x)'+2e(2"-"-2> 

(3.4a) 
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and 

d/ds(e2~*Co : o )=  2(1 - a ) ( f o -  x e - * ) ( 2 -  e - ' )  

z--2 
• ~=o (Z - 2 ) n (3.4b) 

which can be readily integrated using (3.2). 
For simplicity we consider only the case a = 0, x = 1, where 

2 ~ ( - 1 )  p+l c~176 +1" +~(2Z)(e-(p+3's--1) (3.5a) 
z e=o p 

and 

and thus 

4 2~1 (--1)P+I(2z 1) 
c ~ 1 7 6  Z +  1 p=o P + 2  ; (e - ( p + 2 ) ' -  1) 

2 2 , 1 )p+ ' (  ) 
z +  1 ~ ( -  2z 1 -(p+3)s 

p=o P + 3 ; (e - 1) (3.5b) 

e o . o ( t = m ) _  2 ~ ( - l f ( 2 z ) =  1 (3.6a) 
z +  1 + 2  (2z 1 ) (z+  p=o P + 1) 2 

and 
2z- 1 

C o : o ( t = m  ) _  2 ~ ( _ l ) P ( 2 z ;  1)(  2 1 ) 
z + l  p p=o p + 2  + 3  z(z + 1) 2 

(3.6b) 

N _ 2 (3 .7b )  fo.o(t = - + 1 ) !  + + l )  

and 

The results (3.6) can be determined more directly from a combinatorial 
analysis. For (3.6a), consider two separated sites 1 and 2 with just one 
common n.n. We must determine the number  of ways N to fill 1 and 2 and 
all their n.n. such that 1 and 2 fill after their respective n.n. Of these, the 
number  of ways where all z n.n. of 1 and any m of the remaining n.n. of 2 
first fill, then 1, then the remaining n.n. of 2, then 2, clearly equals 
(z + m)! (z - 1 - m)! (zT, l). Thus also accounting for 2 filling before 1, 

z-1 ( ) 2(2z),z,  
U = 2  ~ ( z +  m ) ! ( z -  l - m ) !  z -  1 _ (3.7a) 

m=O m (z + 1)! 
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in agreement with (3.6a) remembering that here fo(t = ~ )  = 1 / z  + 1. A 
similar analysis shows that, if 1 and 2 share just two n.n., then N must be 
replaced by 

2(2z - l ) !z !  N'  1 
N ' -  and f0:0( t = m ) -  (2z)! - z ( z + l )  (3.8) (z + 1)! 

in agreement with (3.6b). 

. . ~ a  
4. C O M P E T I N G  ALMOST RANDOM FILLING 0..~ b 

It is not difficult to show that exact results can be obtained for 
competing almost random filling of several species, on a lattice of arbitrary 
coordination number, by solution of the appropriate hierarchical equations. 
However, for illustrative purposes and simplicity, we restrict our attention 
here to the case of two competing species on a two-dimensional square 
lattice. Again lattice space group invariance of the initial conditions is 
assumed. 

Throughout, the adsorption rates for 0-~ a and 0--> b with less than 
(all) four filled n.n. will be denoted by ~.a and r b, respectively. We first 
consider the special case where the rates for four filled n.n. do not depend 
on whether these are a's or b's and are denoted by a% a and a %  b, 
respectively. It has been noted previously (8) that for competing irreversible 
filling where the rates do not depend on the type of previously filled n.n., a 
closed set of equations can "be obtained for probabilities of empty configu- 
rations. In this case, these equations are identical to those of the previous 
section if we define r = r ~ + r b and a = a % ~ / r  + abrb / r .  It is convenient 
to let x denote either a or b so f~ =f~ +fb ,  etc. Perhaps the most 
fundamental quantities of interest here are fo, fa, and fb which satisfy the 
equations 

d / d t  fo = - rfo + r(1 - a ) f  ~ (4.1a) 
x O x  

x 

d / d t  f~ = r ~ f o -  ra(1 - ~a) f  x (4.1b) 
x O x  

x 

d / d t f b  = rb fo_  rb(1 _ ~b ) fx  (4.1c) 
x O x  

x 

Since 

f x = fo - 4foo + 2fooo + 4 f  o -  4 f  o + f o 
x O x  O0 000 000 

x 0 

and foo, fooo . . . . .  satisfy (1.1), these equations can be readily integrated. It 
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is interesting to note that unless c~ ~=  a b, the trajectory describing the 
process in the (fa, fb) plane will not be linear as with the more standard 
kinetics of competing random processes (cf. Ref. 8). 

Probabilities for larger configurations can be determined by proce- 
dures similar to those of the previous section. Comparing the equations 

d / d t f  o = - 2 ~ - f  o+'C"f 0 - T ~ ( 1 - a " ) f ~ 0  (4.2a) 
a-O a-O 0 - 0  xOxO 

x 

and 

d/dt(fofoo) = - 2rfof00 + ~-~f0foo - T~( 1 - a ~  x foo (4.2b) 
xOx 

x 

it follows that f 0 = fof00 for t > 0 provided this and other natural factori- 
a 0 

zations [cf. (2.7)] are satisfied initially. One can similarly show that the 
probability of a single a-filled site separated from a connected cluster of 
> 2 empty sites, and of a single a-filled site separated by two or more 
unspecified sites from a single 0 site, factorize correspondingly. 

Here it is convenient to restrict our attention to subconfigurations 
{n)o + {m}a with n (m) sites {n} ({m}) specified 0 (a). Probabilities for 
subconfigurations with b-type sites can be obtained from the f{n}o + {m}o by 
conservation of probability. (s) We consider here first cases where (n} 
consists of connected subclusters of > 2 and sites in {m} are adjacent to 
{ n }. Then 

d / d t  f(n}o+(m). = -n'rf(,)o+(m)o + "ra X f(,)o+io+((,~)-Oo (4.3) 
i @ { m )  

from which it is clear that a finite closed set of equations can be obtained 
including any of these and quantities determined from (1.1). For example, 
fa0o is determined through the equation 

d/dt  foo0 = - 2rf~o0 + ~-~fo0o (4.4) 

and a knowledge of fo00. Equations for other configurations couple back to 
these, e.g., 

d/dtf~o = -ff~o + ~-(1 - a ) f  x + r % o  ~ (4.5) 
aOx 

X 

and 

f x = f a o -  2 fo - f a0o  + 2fo  + f o  - f  o 
aOx aO aO0 aO aO0 

x 0 0 

Finally we consider general competing almost random filling where the 
rates for filling with (all) four occupied n.n. now depend on their type and, 
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f o r  

notation, these are denoted by 

q-a q-a a for O--~a, and q-b 
a ' b ' ' ' ' ' q "  b " a 

a . a  aaa  b . b  a . a  
a b a 

and it is convenient to define 

T ~ q-aa "[" q ' b a  ' 

a a a  a . a  a . a  
a a a 

convenience, are assumed rotationally invariant. Using an obvious 

for O ~ b  

d/dt  f ~ = -q- b f b +'cbf o +'r~(f  b + 2f b ) (4.6) 
aOa a . a  aOa aOa " aOa OOa 

a a a a 0 a 

From (4.6), it follows that one must also consider f o , f b . . . . .  It is easy 
aOa aOa 

a 0 

to see that equations for these couple to f ' s  for an empty site with two filled 
and two empty n.n., e.g., 

d / d t f b  =--2"rfb +2T~f b +~-bf 0 (4.7) 
aOa aOa OOa aOa 

0 0 0 0 

Equations f o r f b  , f 0  , . . .  couple t o f o  and f 0  whose equations in 
OOa aOa aO0 bOO ' 

0 0 0 0 

turn couple to f o which is known, thus closing the set. Consequently fo, f~, 
000  

0 

and fb can be determined exactly. 
Again one can show that such factorizations as f o =fofoo, f o 

0 - 0  a 0 

= foJoo, fo--0 = f0 2, fa--o = f  of 0 . . . .  are compatible with the hierarchical 
equations. However one must examine the structure of closed sets of rate 

satisfies 

etc. Equation (1.1) for probabilities of connected clusters of ~> 2 sites is still 
valid (with q- = q-a + q-b). The equations here are more complex than those 
described above and there is no great advantage in extracting a closed set 
of equations for the f(n}0+(,~} ~. Again determination off0,  fa, and fb is of 
prime interest. The equations for these clearly couple to probabilities for a 
single empty site surrounded by all possible combinations of filled sites (as 

well as to various i f ,  n >/2). Thus consider, for example, f b , which 
aOa 

a 
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equations for many f ' s  so we do not give details. Similarly c0_0, ca_ 0 . . . .  
0 can be calculated. 

5. EXTENSIONS TO ANALOGOUS PROCESSES 
WITH LONGER-RANGE COOPERATIVE EFFECTS 

In obtaining the above exact solutions for almost random filling, (1.1) 
plays a central role. This equation reflects the fact that provided the site 
being filled is adjacent to at least one other empty site (i.e., part of a 
connected cluster of > 2 empty sites), then a single adsorption rate r 
operates. This suggests the natural extension to cases where a single rate, ~-, 
say, operates if the site being filled 0 o  a is part of a connected cluster of 
> R + 1 empty sites. Clearly such a prescription corresponds to a certain 
choice of cooperative effects of range R lattice vectors. An obvious and 
important consequence of this choice is that the probability, fn, for any 
connected cluster of n empty sites satisfies 

d / d t f f  = - n r f f ,  provided n > R + 1 (5.1) 

Equation (5.1) also holds for a disconnected configuration of n empty sites 
provided each is in a connected cluster of > R + 1 empty sites. Through 
explicit two-dimensional square lattice examples, we illustrate below how 
(5.1) leads to a complete exact solution for cases where, if the filling site is 
not part of an empty > R + 1 site cluster, a single second rate, at ,  say, 
operates. 

When R = 2 (range two, necessarily rotation and reflection invariant 
cooperative effects), we have, using the obvious notation for the rates, 

+ = ~ "  + = ~ "  + = ~ -  + - ~ "  ( 5 . 2 )  

+ + +  + 0 +  + + +  + + 0  
+ 0 . 0 +  + o . + +  + + . 0 0  + + . 0 +  

+ + +  + + +  + + +  + + +  
+ + + + 

where + indicates either 0 or a. For influencing configurations not in this 
set (after possible rotation/reflection), the corresponding rates are given by 
at .  Here, setting s = ~-t, one immediately obtains 

- d /ds  f"  = nff for n > 3 (5.3a) 

- d / d ,  foo = 2(foo- f oo ) + (5.3b) a a  

aOOa aOOa 
a a  a a  

- d / d s f o = ( f o - f  . --4faO0 ) + a f  a + 4 a f  a a (5.3C) 
aOa a aOa  aOOa 

a a a  a a a  

Converting the right-hand side of (5.3b, c) to empty configurations closes 
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(5.3) so foo(S) and fo(s) are readily obtained. For a random initial distribu- 
tion with f0 = x, one obtains 

6 

f o o -  x2e -as=  2(a - l)e 2,~s~ n - 7 2 ~ 2 - a  (6n)(e(2a-n-a)s--1) (5.4a) 
n=O 

io-Xe s=(1-1x)e-'~'[ ~ (-x)"+' (4) n=o n-+-] Z-a ( e ( . - .  1 ) ,  1) 

6 (__X) n+2 ] --4~on'~-Z-a(6)(e(<~-n-2)s-1)=+ (5.4b) 

Thus for an initially empty lattice (x = 1) and a = 0, 

foo(t = oo)= 1/28, fo(t  = oo)= 1/3 (5.5) 

Note that, when a = 0, only fn for n > 3 appear on the right-hand side of 
(5.3). 

We remark that combinatorial techniques can be applied to directly 
determine saturation values such as (5.5) although these calculations will 
typically be more complex than the corresponding ones in Sections 2 and 3. 
For example, the number of ways of filling the eight sites in 

" 1  " 2  " 

such that both 1 and 2 fill after the rest (2! 6!) divided by the total number 
of ways of filling these sites (8!) gives foo(t = ~) .  This calculation only 
works because, if 1 and 2 are empty at t = ~ for the a = 0 process, then all 
six surrounding sites must be filled. 

Just as for R = 1, here one must also consider the disconnected empty 
configurations for a complete solution of the problem. This is only trivial 
for configurations which each specified site is in a disconnected cluster of 
> 3 empty sites since their probabilities satisfy (5.1). Thus consider, e.g., 

fooo-o0 by comparing the equations 

- d / d s  fooo-oo = 5foo0-o0 - 2(1 - a ) f  aa (5.6a) 
O00aOOa 

aa  

- d / d s  (fooofoo) = 5fooofoo - 2(1 - a)fooof ~ (5.6b) 
aOOa 

aa 

Since for suitably factorizing (e.g., random) initial conditions, from (5.3a), 

i --iooo-oo=--iooo(ioa -/oo1 
O00aOOa aOOa 

aa  aa  
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it follows that  f000-0o = fooofoo. Similarly, probabil i t ies for all configurat ions 
containing a connected  empty  cluster of ~> 3 sites separa ted  f rom an empty  
pair  factorize correspondingly.  It  is, however,  easy to show that  e0o 0 o 

-=- foo0-o - fooofo ~ 0 and 

-d/dscooo_ o = (3 + a)Coo o o + (1 - a)( /0o0o0-fooofoo) + (1 - a) fooof a~ 
aOOa 

aa 

(5.8) 

More  generally, one can show that  the probabi l i ty  of a connected  empty  
cluster of /> 3 sites separa ted  f rom a single empty  site factors natural ly only 
for separat ions > 1 site. Finally, for configurat ions with two disconnected 
clusters of m and n emp ty  sites (m,n  ~< 3), one only has factorizat ion of 
their probabil i t ies  for separat ions > 5 - n - m sites. For  example,  f0o, f0-0, 
fo--0, and  f0---0 do not  factorize, but  f o - - - 0  does. Expressions for the 
nonfactor iza t ing  quantit ies can be ob ta ined  s t ra ightforwardly and one 
could cont inue to analyze triply, etc. d isconnected empty  configurat ions.  

One could cont inue to obta in  exact  results for longer-range coopera-  
tive effects in an analogous  fashion. For  example,  for R = 3, 

- d / a s  fo0o = 3/o0o - 3(1 - a ) f  ~o~ (5.9a) 
aOOOa 

aaa 

- d / d s  f = 3 f o - 3 ( 1 - a ) f  ~ (5.98) 
O0 aOa 

aOOa 
aa 

so for r a n d o m  initial condit ions with fo = x 

8 ( _  
X 

n=O 

and an expression for f 0 is ob ta ined  by replacing 8 by 7 on the r ight-hand 
o0 

side. Thus  for  c~ -- 0 

f o o o ( t = o e ) -  1 _ 3! 8! 3! 7! 
165 11! ' f ~  ~ ) -  1201 _ 10! (5.11) 

o0 

We remark  that  for general R, probabil i t ies  for  configurat ions with two 
disconnected clusters of m and n empty  sites (m, n < R + 1) factor  for 
separat ions > 2R + 1 - n - m sites. Thus  the two-point  correlat ions factor  
for separat ions > 2R - 1 sites. 

Final ly  we note  that  one could also solve, exactly, suitably prescribed,  
irreversible coadsorp t ion  processes with long-range cooperat ive  effects of 
the type described here (cf. Section 4). 
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6. DISCUSSION 

We have indicated that these models have some physical significance, 
but perhaps more importantly, they provide an example of dynamical 
processes on infinite lattices of arbitrary dimension for which the master 
equations (in hierarchial form) can be solved exactly. It is interesting to 
note that these almost random filling process have strictly finite-range 
correlations (provided this is true of the initial conditions). Availability of 
exact results for the distribution of filled sites at various coverages moti- 
vates several questions, which we shall pursue in later work, such as the 
nature of the island size/shape distribution and the percolation characteris- 
tics of the distribution. 
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